
EXPERIENCE WITt 1 FORM AI. MWI’} IODS ‘I’EC} INIQUES
AT TIIE JET PROPULSION lABORATORY

FROM A QUALITY ASSURANCE PERSPECTIVE

John C. Kelly, Ph.1)., and Rick Covington, Ph.t).

%ftwarc I’roduct Assurance $iection
Jet Propulsion Laboratory, California lnstitutc of Technology

4800 Oak Grove Ih-ivc, Pasadena, California 91109-8099

lntcrnct: jkclly@spal .jpl.nasa .gov, cov@spa 1.jpl.nasa.gov

R e c e n t cxpcricncc wi th Formal
Methods (FM) in the Sofiwarc Quality
Assurance Section at the Jet Propulsion
1 jab is presented. An integrated
h-ma] Mcthoct pmccss is presented to
show how related existing rcquirc-
mcnts analysis and FM techniques
complement one another. Example
application Of FM techniques such as
formal specifications and specification
animators arc presented. I“hc authors
suggest that the quality assurance
organization is a natural honw for the
}:ormal Methods specialist, whose
expertise can then be used to best
advantage across a range of projects.

1. introduction

Recent studies of critical software
subsystems have provided data which
expose the software requirements
quality problem facing current and
future projects. The early stages of the
software life cycle are especially prone
to errors which can have a lasting
influence on the reliability, cost, and
safety of a system.

I highlights of these studies include the
following:

● The h ighes t dens i ty c)f m a j o r
defects found through the use of
software inspections was during
the requirements phase (an
average of 1 major defect found
per 3 pages of r e q u i r e m e n t s

dc)curnentation). This was 7 times
higher than the density of major
defects found in code inspections.

● Most hazardous software safety
errors fc)und dur ing sys tem
integratic)n and test of two
unmanned spacecraft were the
r e s u l t o f requi rements
d i s c r e p a n c i e s o r i n t e r f a c e
specifications.

● Rcquirenlellts errors are between
10 and 100 times more costly to fix
at later phases of the software life
cycle than at the requirelnents
phase itself 1J2~6.

● One study found that the most
frequent (307.) of al] errors could
b e a t t r i b u t e d to the fau l ty
statement or understanding of
requirements and specification,

while another found that early life
cycle errors are the most likely to
lead to catastrophic failures7.

The.w problems indicate the need to
advance the state-of-the-practice in the
area of s o f t w a r e r e q u i r e m e n t s
engineo-ing. The later life cycle phases
of detailed design and code are
already supported by well defined
methods, languages, and tools.
Ilowever, current requirements
engincwring practices are mired in the
use of ad hoc methods, ambiguous
natural language specifications, and
litt le or no automated suppc)rt.

1

for example, arc the best candidates
for the most rigorous application of
Formal Mcthorjs. Figure 1 shows lCVC1
of formality integrated with the
Software Engineering Institute (SRI)
Maturity Model 5

1
9. ‘I%c base and left-

hand branch in Figure 1 shows the five
levels c~f SE1’S Process Maturity Model,
which indicates an organi?.aticln”s
capability to produce quality software
products. A few NASA contractc)rs
have been rated in the 3-5 range of
S}il’s model (3 to 5 in F’igure 1). For
t hcse organi 7ations, a more formal
approach could be used to break
through their current software quality
ceiling. The right-hand branc}~ of
Figure 1 (Icvels 4b to 7b) s h o w s
increasing levels of formality which
can be app]icd to critical software
projects in either forward or reverse
engineering situations. Structure
Modeling (41>) refers to using graphical
models to determine the inter-
relationship between requirements;
I:ormal Specifications (5b) is the use of
formal languages and associated tools
to state and check requirements;
specification animation (6b) enables
the formal specification to be viewed
d y n a m i c a l l y ; p r o o f s (7t>) c a n
demonstrate whether the specifications
arc sufficient to ensure critical
properties.

The fraction of the application to be
subjected to FM is also a function of
application criticality and available
resources. Finally, the life cycle phase
c~f application development in which
Fkrrmal Methods is applied determines
which FM techniques are appropriate.
For example, requirements analysis
uses d i f ferent too ls f rom code
verification. Note that life cycle is
used in a broad sense, and that FM is
not restricted to any specific life cycle
model.

While the most rigorous assurance of
correctness of specification comes from
applying FM at
formality (i.e.,

the highest level
proof of claims

of
or

proper t i es concern ing the
specificaticwi), significant benefit to the
dcvek)pmcnt prc}cess can be attained
from less formal aspects of the
methodology. First, simply de-scribing
a system c)r a critical subpart in a
for~nal notation intrc)duces a more
rigorous way of thinking about the
system. Second, type checking in a
forlnal specification language subjects
a specification to rnc)re ri~orous
scrutiny than merely checking that all
expressions are of the correct type. In
fact, type checking may give rise to
type correctness coliditions, or logical
assertions about the declaration and
usafic of types in the specification
which must be proven true before the
speci ficat ion can be considered type-
correct. Finally, specification
animation, a tec}mique for developing
an executable program that exhibits
the high-level behavior implied by the
formal specification is often an
effective informal alternative to proof
for explc)ring the dynamic behavic)r of
a specification.

The authors’ parent section (Software
]’roduct Assurance) is responsible for
in]plementing product assurance
programs on software subsystems at
the Jet)’rc)pulsion 1,aboratory. Its role
is to provide services and techniques
to effectively miti~ate risk during the
development and maintenance of
software subsystems. Within this
section the authors are members of the
Applied Research C;roup which
evaluates new techniques and tools
which suppc)rt the objectives of
improved software quality, then
provide technc)logy transfer courses
and materials to allow projects to
easily adopt the improved techniques.
(urrently I:ormal Methods and Object
Oriented I)csign are key areas of
activities. l“his section discusses how
Formal Methc)ds can be integrated into
an ongoing software development
process. The concurrent enginecrirrg

3

role of the Software Quality AssLlrancc
organization a natural organi7htional
home for these techniques.

}~gurc 2 shows a simplified picture of
h o w s o f t w a r e rcquircrncmts arc
traditionally developed, ‘t’hc principal
products dmwlopcd include a textual
description of the requirements, This
usually includes English “shall”
statements that describe high-level
requirements or obligations the
resulting software must satisfy. in
addition, sc)nw projects usc various
diagraming techniques to illustrate
the structure of the requirements and
to show their inter-relationship. These
can include data flow diagrams, entity-
rclationships diagrams, state charts,
and object diagrams. While these
provide insight into the inter-
relationships of rcquircmcnts, they arc
usually a secondary consideration at
this phase. } Iigh Imvcl ‘t$est Plans arc
dcvclopcd d u r i n g t h i s phase to
provide guidance for subsystmn-kwcl
tests. l’roduct assurance activities at
this phase that have proven to be
effective inc]udc }:agan-style
inspections of b o t h t h e tcxtua]
rcquircmcnts and the I ligh l,evcl ‘1’cst
Plan. ‘l”hcsc inspcciions arc conducted
on segments of these two documents
as they are being devclopcd6. After
the development of these documents
(or significant segments of these
documents in an incremental build life
cycle), a baseline review is conducted
prior to approval for the beginning of
lower level engineering product
development. While this process has
been effective for many projects, there
arc still significant opportunities for
improvement. Current quality
assurance approaches have the
following limitations:

● These techniques arc most ly
manual, thus making the finding
of errors highly dcpcndcnt upon
the skill and diligence of the
inspector and review teams.

● I!ven though a very high number
of defects are found using these
techniques, their prcwalcncc and
density indicate t}lat there exist
many errors w h i c h re~nain
ulidiscovcrcd.

● S o m e N A S A p r o j e c t s h a v e
employed this approach to reach a
qLlality ceiling on critical software
SLlbsyStC’lnS. “1’hcrcfore innova-
tions are nccdcd to push the
project on toward new quality
goals.

l:igL]rc 3 shows additional techniques
that the aLlthors and their associates
have been investigating throLlgh
demonstrations on critical NASA
software subsystems. l’hmc additional
interrelated techniq Lies inc]Llde
Structure nmdcling (in particular, the
approach described by the Object
Oriented Modeling (C) M’t$)l 0, and
formal spctcification (e.~., 1101,4 and
l’VS1 l). The quality assurance aspect
of these engineering products are
indicated by the attached gray boxes.

strLlctLlrc mc)deling p r o v i d e s a
g r a p h i c a l v i e w o f t h e intcr-
rclations}]ips bctwccn req Llircmwnts
and, in the case of OMT models, the
req L] i red object model, dynamic
model, and functional model. The
~raphical depiction of the desired
system is easily reviewable throL!gh
Fagan-style inspections. -1’hese
inspections include project team
nwmbcrs, who have a vested interest
in the engineering product under
review. Structure models can bc used
a s a s t a r t i n g p o i n t for both
specification animation and formal
specifications. The arrows Icading in
f rom the edges indica te tha t ,
depending on the criticality of the
subsystcm, the current knowlcctgc of
rcqL]ircnwnts, and the resource of the
project, any one of the three tcchniqLles
potentially can bc developed after the
textual description. Creation of a
formal specification requires a

4

translation of the requirements into a
rigorous logical model supported by a
formal specification language. When
t}~is technique is used, the formal
specification becomes one of the
primary engineering products of the
requirements phase. ‘t”he expected
t>enefits from moving to a formal
specification include 1) a reduction in
ambiguity in the formal specification
as compared w i t h the t e x t u a l
description, 2) the variety and for[nal
logical rigor of the quality assurance
techniques which can be applied to the
formal spccificaticm, and 3) the ability
of t h e f o r m a l s p e c i f i c a t i o n to
significantly reduce the scope of the
test plan without compromising its
quality. Formal specifications suppmt
such automated analysis techniques as
consistency checkers, stccrablc
theorem provers, and proof checkers.
Peer review inspections are still
needed to verify that the formal
specification faithfully represents the
system that was intended.

Formal spccificaticms require training
and skills beyond most software
engineering techniques. For this
reason, we plan to use specialized I;M
teams to provide the development and
checking of formal specifications, and
to make this expertise available to
project develc~pers. in such an
arrangement, o n l y a reading
knowledge of formal specification
languages is required for most of the
software development team.
Purthcrmorc, specification animation
provides insight into the requirements
which i s not pcrssible t h r o u g h
structured modeling or formal
specification alone. Specification
animation allows the requirements to
bc viewed dynamically by supplying a
program that demonstrates the
execution of the high level
functionality of the subsystem under
study. Specification animations also
provide a rcasonablcncss check On the
formal specification by providing the
project team with an executable
representation of the requirerncmts.

This animation serves as a high-level
prototype which is built to confirm the
description of the subsystem, rather
than as a low-level dernonstraticm of
the feasibility of a particL]lar feature.
The authcws have found specification
aliin~ation to be very useful in both
forward as well as reverse engineering
situations, and details of cxarnple
usafie is given in the IIQXt Sc’ctic)n.

~,.. Caw Studies

in this section, we present a case study
of how PM was used in a forward
engineering scenario for the study c)f
the ftoatinc point math for the M1l,-
S1’1)-1 750A micro processc)r, and in a
reverse engineering sense for a generic
spacecraft ~,uidanccl, rlavi~atic)n ar]d
control (GNC’) function.

-A, _M 11.-S1’1)-17SOA Floating I.’{li!]t

~’his section repc)rts on some of the
results from a study of the floating
point arithmetic of the Mll,-Sl’I)-
17.SOA microprocessor 12. The purpose
of the study was tc) generate a formal
specification of the definition of the
floating point c)perations from the
MI I,-STD document, and to then
explore the fc~rmal specification for
internal Ic)gical consistency and
ambiguity which could lead to
i n c o r r e c t in~plenwntations of the
standard in silicon. ~’he specificaticm
language used was 1101. (} Iighcr-
Order t.ogic), a public domain tool
maintained by Cambridge University
(~JK) 4.

C o n s i d e r a t i o n of addi t ion ,
multiplication, and division fcwnd no
Seric)us prc)blcrrw, but the definition of
subtraction was found to be
ambiguous. I’he ctcfinition from the
Ml] ,-STI> fc)r floating point subtraction
is as follows:

l’he floating point IIcrivcd
C)perand, DO, i s f loa t ing
point subtracted from the

5

contents of registers RA and
RA+ 1. The rcsuli is stored in
registers RA and RA+l,

‘I”he process of this opcralion is
ctcfincd as fo l lows : the
mantissa of the number with
the smaller algebraic expcmcnt
is shifted right and the
exponent incrmncntcd by onc
for each bit shiftccl until the
exponents are equal. The
mantissa of the 1)0 is then
subtracted from (RA, RA+l).
1(the ciiffcrencc overflows the
24-bit mantissa, then it is
shifted right onc position, the
sign bit restored, and the
exponent incrmncnted by one.
If the exponent excccds 7}’ hcx
as a result of this increment
opera tic>n, overflow occurs
and the o p e r a t i o n i s
terminated. If the sum does
not r e s u l t i n exponent
overflow, t h e rcsu]t i s
normalized. If during t}]c
normalization process the
exponent i s dccrcmcntcd
below 80 hex, then underflow
occurs and a zero is inserted
for the result.

‘t’hc essentials of the resulting } IC)I,
specification for 1750A single precision
f loa t ing po int subtrac t ion are
contained in the following }101,
definitions.

l e t float_axiom =,
ciefine- t y p e ‘ f loa t ax iom’
‘ float = F L O A T wor~24
word8’ ; ;

l e t s p f 8ub =
new de f~nitiori

(‘ ~pf_sub_def ’ ,
“spf_sub (a :fl o a t)

(b :float) =

l e t . argnorm =
((sPf_i srlorrr~alized a)
/ \ (spf_ isnormalized

b)) i n

J e t a i = (spf-to_ispf a)
i n
let b i = (spf_to-ispf b)

i n
let bi tc =

(isp}_twclscc>mp b i) i n
l e t azero =

(spf. equal.s a
Spf zero) i n

loZ bzero =
(spf_ e q u a l s b

s p f 7ero) i n

((-argr,orrr,) = >
(SPI.’M;C AlRF\ E’ F’ ‘1’ F’) I

((b?ero) =>
(SPE’REX a E’ E’ E“ E“) I

(ispf_do_ acid ai
hi_tc)))’’);;

I’hc first definition establishes the type
“flea t“ as a record composed of a 24 bit
ma~ltissa al~d an 8 bit cxponcl~t. I“hc
second defines the singlr precision
floating point subtraction operation
“spf. sub”. ~’hc series of six “let”
statements within “spf_sub” establish
the value of several intermediate
results. “1’o interpret these statements,
note that }1014 expressions fc~llow a
lisp-like syntax. A parenthesized list
of symbols indicates a function call,
with the first clcrncnt in the list the
nalnc of the f u n c t i o n , a n d t h e
remaining sy~nbo]s the arguments to
the function. “argnorm” is a Uoolcan
indicating whether c)r not the original
arguments “a” and “b” arcnormalizcd.
“ai” and “hi” represent extended
precision arithmetic versions of the
original arguments’’a’’and “b”. “bi-tc”
represents the two’s con]plcrncnt of
“hi” in extended arithmetic. “aT,cro”
a n d “bzcro” arc Boolcans w h i c h
indicate whether or not “a” and “b”
respectively arc equal to zero. The
final t h r e e)incs o f “spf_sub”
inlplcrncnt an “if-then-else” which
constructs the return value for the
function. If arguments arc not
normalized, the result is undefined,
CISC if “b” is equal to zero, “a” is
returned, else the value of “a” added to
the two’s cornplcrncnt o f “ b ” i s
ret urncd.

6

I’hc final step in the definition of
“spf_sub” implicitly assumes that “a”
a d d e d to t h e n e g a t i v e (t w o ’ s
cornplcnmnt) of “b” produces the same
value as “b” directly subtracted from
“a”. 1 lowcvcr, ccmntcrcxamplcs can bc
found with some pencil-and-paper
analysis. An examination of the
highlighted passages above from the
MI L-SI’1) document reveals that the
standard is incomplete or ambiguous
on the specific subtraction algorithm to
USC. Since two of the known possible
choices -- -“add-the-negative” and
“direct subtraction” -- can be shown to
give different results for some pairs of
identical operands, the possibility
exists that this ambiguity cc~uld bc
p r o p a g a t e d i n t o d i s t i n c t
ir]~~>len~el]tatio]~s of the standard in
silicon. Although most fabricators are
aware of this ambiguity and have
resolved it in a scnsib]e fashion, the
cxcrcisc demonstrated how quickly
f u n d a m e n t a l q u e s t i o n s a b o u t
completeness and consistency of a
specification can be grasped once the
specification is stated formally. In this
study, most of the in teres t ing
conclusions were obtained by
subjecting thh problem only to a
moderate ICVCI of for]nalism (i.e., type
checking and spccificat ion ani mat ion,
but no proofs).

This section presents the results of a
reverse-cnginccr-ing study of a generic
spacecraft C,NC (guidance, navigation,
and control) subsystcm. The goal of
the study was to derive requirements
for a system supported only by
implementation-level external
documentation. I’rc)m a quality
assurance perspective, the goals of the
study were:

b to understand what were the
important global properties (i.e.,
the true requirements) which were
obscured by implementation detail

● to produce supporl products that
would assist in the task of bringing
pcrsonnc] new to the project up to
spmd

● to produce suppc)rt products that
would ass i s t in the task of
determining global effects of
modifications (maintenance)

● to provide an alternative to the
systcm’s current maintenance
approach which uscs heavy
manual analysis

I’hc problem statement for the GNC
function is, given a commanded
direction along three rotation axes
(roll, pitch, and yaw), determine the
best combination of jets to fire to
satisfy the command.]ets a r c
distributed about the body of the
spacecraft and fire in fix(~d dirc~ctions,
A table of prccomputcd values which
dcscribc the expected rotational effects
from individual jet firings is available
to the algorithm.

An example of the documentation for
onc subfunction is shown in figure 4.
‘I’his functic)n computes fc~ur table
lookup indices (Index 1 throush Index
4) into a table of jet rotation
characteristics as a function of the
input GNC systcm mode, rcprcsentcd
by the four inputs, mode 1 through
mode 4 , a n d prcdcfincd i n t e g e r
constants 1’1 through 1’8. Ikttcd lines
serve as switch controls, causing in
effect the slanted lines to bc “thrown”
to the switch terminal that matches the
value c)f the switch control. The figLm
defines its function with precision, but
not with clarity. Most importantly,
there is no structure tc) the figure that
suggests any rationale for why the
function works the way it does.

In the abscncc of other information,
the best strategy for beginning the
process of discovering the lost
raticmalc of such functions was to
write a spccificaticm animator to mimic
the function’s behavior according to
the available documentation. This

7

stratcfy w a s strai~llt[orwalci to
ilnplancmt for tlIc fulwtion ill qllcstic)ll
since tlw ranges f o r all illpuls w’cw
ciiscretc and relatively slnal], Illakillfi
cxlmus(ivc tesiill~ feasible. l:loln
s[udyinu tlIc va lues o f tlIc Outl)ut
i~dim, a more obvious SII uct~lrc
q u i c k l y bffallw a}~f,arcl~(. ‘J’tlis IICW
siruciure i s prcvxvltcct ill flowcharl
fonll ill fi~urc 5, alvd in tabLllal folllJ i]i
fi~urc 6. 11 was shown by exhaustive
tcstinc (0 bc equivalen[to tlw ori~illal
ciocu]nentation (fisurc 4) . 1:10111
fir,urcs 5 c)r 6, the ullcicrlyill~ IOcic of
the function bcccrlncs clearer. I:irst, the
actual system Inodc’s call t)c
I c’co~niz.cci from the values of (lIC
il~pllts, Mode 1 throu~}l Mode 4. ‘1’hc
flowchart implies that there arc two
:]]ajor]nocics (Mode 4 = otl al]ci Mode
4 = off, which we will Iefcr k) as “4 OII”
al~d “4 off”). Mode “4 on” is fu~ (hct
broken down into 3 subInocic5, “3 Oil”,
“3 off/2 011’(, ar)ct “3 c)ff/2 off”, wllilc
major Inmic “4 off” Ilas 110 SUIHII(K{(IS.
I:illally, t}Ie flcrwcllarl r e v e a l s that
assi~,llllwnt of values to inciiccs 1 al~ci
? is Ciecoul)led frc)nl the assi~,l]I]wnt ()(
valum to lnciiccs 3 and 4.

[ul]ctic)l~ does. ‘1’lm autolnateci lo~ical
al\alysis of tlie s]wcification }Ias a
InuclI lwttcl chance of p[-(ducillfi
u.sdul results if tlw s~)ecification itself
elucidates Iatllcr titan Ob.SCIIICS t]lis
C’sscllc(’.

v. conclusions

8

IJalmratory, Califorllia lIlsli(utc o f
q’echnolo~y, under a contract with tlw
Nat iona l Aeronaut i cs and SIMce
Acln]inistr-ation. IJartial fu~vdili~ w a s
]wovidmt by an 1{’1’01’ fro~n NASA
COck Q (or a lnulticc]~ter imvx[i~atiol]
into I:ormal Mctl\ods a t [Iw Jet
l’ro~mlsion 1 alx)ra[oryt Jc)lInson Space
Cculter, and 1 an~lcy Rc.scarcll Ceiltc~.

l<eferencc l]erci]i to a]ly s]wcific
c o m m e r c i a l procluc[, }>roccss, or
sclvicc l~y tladc, nalnr, traclcvnark,
nlallufacturcr, or otlimwisc, does not
corlstiluk or imply ils cudorscvncnt by
lIIC Uni(wl States Ck)verlllnent or tllc
Jet l’ro}wlsion 1 ,aboratory, Califm rlia
lrlstit~rtc of l’cchnolo~y.

1 lfasili, V. I{. and I’CII icol]c, 1;.’1’.
‘%ftware l;rrcrrs arid Cornplcxity:
A n llrnpirica] Ir~vesti Sati(jn”,
~o?llttllitlicoliolls 0/ fhc ACM, ?1(1):
4?-5?, Ja]luary, 1984.

3 ckvil~~loll, R.C;., Abcrlletlly, K . ,
and Cullyer, J. C., “Usil~~, l~or Ins]
Mctliocls to Model tl~e 1750A
Mimoproccssor l~loati]~?, l’oil~t
Arifhrlleti c”, sul)rnittcd f o r
pul~lication.

4 Gorcloll, h4,J.C., “1 101,: A l’roof
Gcllmatillg System f o r } li~hrr
Ode; 1 ,Or, ic”, ill VIS1 S/x-ci/icfl/iotf,
Vftificatiotl dtId Sytlfhcsis, C;.
IIirtwistle arid I’. A.
Sllt)r-a]ll]larl)~alll, Ccl S., 7 3 -] ? 8 ,
Klllwer Acadelnic l’ul)lishc]s,
1988,

6

7

8

9

1()

11

1?

Kelly, J.C’., SIWI if, J. S., and 110}x, J.
“Ar~ Arlalysis of l)cfcct I)mwitics
l:oul~d l)uril~c Sof tware
IIlsfwctions”,)ourlml 0/ Systems frl~d
Sojfwrre, V(II 17, 111-117, Jar~uary,
1(99?,

1.m~cs(~l~, N. C;. “Softw’arc~ Safety:
Wtly, Wl]at, a]lct 1 low”, A CA4
Cowpllfillg S[m)c>ys, 18(?); 125-163,
June, 1986.

1 .lItz, R.]<. “Ar~alyzil~C Software
1{(’quilcmcrlts l:rrors ill Safety -
<-r itical ltlnlwddwl Systems”, to
a]]pcar- itt l’r(rcccditl$s of the 1}:}:1:
l?~lrrt~afio~[al Sytuposiuw 01/
Requircwf/~ls l:ngi~~ecrif~x, Sa n
I)i~~(), (’A, Jarluary, 1993.

l ’sulk, M. C., ct al., “(a~)abi]ity
h4aturity h4(Jdel for Software”,
<’h4LJ/SI;.l-91 -’l’1{-?4, ‘1”Iu2 $k)ftwarc
];~~~,i~}eerir~~, lnstitutc, A~lp,ust,
]99],

Rurnbaush, J . , l~lalla, h4.,
l’rcrnerlani, 1’.1;., al~d I.orcl~sc]~,
W . , Objccf-Ofimfd Modeli~/g flud
I)csigtt, I’rcIlticc 1 Ian, }:.l]~lewood
Cliffs, NJ, 1991.

Stlar~kal, hi., Owre, S . , a]]cl
Rusllby, J.h4., ““1’l]c I’VS
Sl]c’cification l.ar}fiua~c (Ilc[a
Release)”, S1<1 lr~ter[latio[lal, hleti]()
l’a!k, C’A, Marcl~ 31,1993.

LJS l)el~ar(rncl]t o f I)cfcr]sc,
“Mi l i ta ry Star~dard Sixtccl)-i)it
~’()]ll}>utcr lrlstruct ion S(’t
Arcliit(~cturc”, h411,-STi)- 1750A
(USA}:), lUIV 2, 1980.... ,

Process
Branch

5. Optimized

\

Rigorous
Tech. & TOO/S p 7 b” ‘rmfs

7’Branch
6b. Specification

Animation

/

5b. Formal Specification

4“mnagd\ /4b”str”ct”reMde’ing
‘f 3. Defined

! 2. Repeatable

1, Initial

k’igure 1.: Levels of Expected Quality

Description
Ii(“shahs”) ._ _____ _..._. _ ____–__ -.-–. _. J

———. ..—. —.
Iligh Level
Test Plan

.klnspctions

—

.—

Figure 2.: Traditional Requirements Development and Quality Assurance

Textual
Description

(“shahs”)

3Inspections

-——
+

Rtructure
Modeling

(OMT)

lttspctions

-“~

.—

.=

Specifications ~C,
Animation ‘ ‘

.—
Run & Exercise

~..

}Iigh Level
Test l’lan

(plus
properties)

Inspections

Baseline Review
—

● T.C. = trace to formal specification check

Figure 3.: Integrated Formal Methods Process Model

10

